

The Discovery of ARV-393, a potent, orally bioavailable BCL6-targeting PROTAC[®] for the treatment of NHL

Dan Sherman, Sheryl M. Gough, Lynn DeCarr, Sarah Eaton, Mark Bookbinder, Jennifer Pizzano, Elizabeth Bortolon, John Corradi, Rashaun Wilson, Daniel Rogoz, Ram Lingamaneni, Wei Zhang, Michelle Zhang, Xin Chen, Gan Wang, Hanqing Dong, Michael Berlin, Keith R. Hornberger, Lawrence Snyder, Achal Pashine and Ian Taylor

Arvinas, Inc., New Haven, CT

Disclaimer

I am both an employee and shareholder of Arvinas, Inc.

PROTAC[®] protein degraders combine the benefits of small molecules and gene-based knockdown technologies

Arvinas' proteolysis-targeting chimera (PROTAC[®]) degraders have the potential to:

- Eliminate (rather than inhibit) disease-causing proteins' with enzymatic AND scaffolding functions
- Bind and degrade classically undruggable proteins
- Act iteratively (catalytically)
- Be administered orally and achieve broad tissue distribution, including across the blood-brain-barrier

- NHL is a heterogenous disease that includes diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), angioimmunoblastic T-cell lymphomas (AITL), Burkitt lymphoma (BL)
- Worldwide, 544,000 new cases and 260,000 deaths were attributed to NHL in 2020¹
 - In the US, there are approximately 80,000 new cases and 20,000 deaths per year^{2,3}
- DLBCL is the most common sub-type of NHL, representing ~30% of all cases in the US⁴
 - Although outcomes vary by subtype, ~40% of patients with DLBCL ultimately relapse following standard front-line chemo-immunotherapy, ⁵⁻⁹

¹Sung et. al. *CA Cancer J Clin*. (2021), 71(3), 209 - 249; ²Siegel et. al. *CA Cancer J Clin* (2023); ³SEER:https://seer.cancer.gov/statfacts/html/nhl.html; ⁴Freedman et. al. *UpToDate* (2024) Initial treatment of limited stage diffuse large B cell lymphoma; ⁵Markanda & Kumar *Decision Resources* (2024); ⁶Sehn et al. *J Hem Onc* (2020) 13(71); ⁷Sehn & Salles *NEJM* (2021) 384(9) 842 - 858; ⁸Coiffier et. al. *Blood* (2010), 116(12), 2040 - 2045; ⁹Davies et. al. ASH (2022) ReMODL-B trial

- Structural rearrangements and mutations of *BCL6* result in its deregulation or overexpression and are sufficient to induce B-cell lymphoma¹
- BCL6 gene translocation occurs in ~40% of DLBCL and in 39% of FL cases that had transformed^{2,3,4}
- Somatic mutation of the BCL6 gene occurs in DLBCLs, BLs and FLs; increased BCL6 expression over normal levels is not necessarily required for oncogenesis⁵
- FL is largely incurable and can transform into a DLBCL-like cancer, with an annual risk of transformation of ~1-2%⁶⁻⁷
- An orally bioavailable BCL6 degrader has the potential to be a powerful tool to treat NHLs alongside, or in addition to standard of care (SOC) and new biological agents

¹Cattoretti et. al. *Cancer Cell* (2005) 7, 445 – 455;² Pasqualucci et. al., *Blood* (2003),101(8) 2914 – 2923; ³Akasaka et. al. Neoplasia (2003), 102(4) 1443-1448; ⁴Vega and Medeiros *Arch Pathol Lab Med* (2003) 127(9), 1148-1160; ⁵Green et. al. *Nat Comm* (2014); 1857 - 1862; ⁶Batlevi et. al. *Blood Can J* (2020) 10 (74); ⁷Freedman, A. & Friedberg, J *UpToDate* (2024), Histologic transformation of follicular lymphoma

The BCL6 transcription repressor: *A key modulator of B-cell responses*

Adapted from Leeman-Neill & Bhagat Expert Opin Ther Targets (2017) 22(2), 143 – 152; 1R2B structure: Ahmad et. al. Mol Cell (2003) 12, 1551-1564;

BCL6 degrader discovery at Arvinas

Assay Cascade

Structural Models

BCL6 homodimer models based on published co-crystal structures (5N21¹, 6EW8¹, 5MW6²)

- T47D: High content assay (BCL6 expression, adherent cells, high-throughput)
- OCI-Ly-1: GCB DLBCL work horse cell line, ELISA format highly reproducible
- In vitro ADME permeability and metabolic stability assays not useful for triaging compounds for PK

¹McCoul et. al. J. Med Chem (2017), 60(10), 4386 – 4402; ²Kerres et.al. Cell Reports (2017) 20(12), 2860-2875

Focused

Libraries

BCL6 PROTAC SAR waypoints

High potency and oral exposure demonstrated to be possible with BCL6 PROTAC

Cmpd# T47D DC₅₀ Mouse CL(%Q_H) Mouse F 2 4 4nM 15nM CL: 1% CL: -F: 40% F: -3 >1000nM CL: -F: abs 5 4nM 12nM CL: 9% CL: 11% F: 37% F: 68% 7 6 0.07nM 3nM CL: 36% CL: 28% F: 22% Ĥ F: 4% ĊL 8

Medicinal chemistry campaign identifies ARV-393 A potent, rapid, on-mechanism and orally bioavailable BCL6 PROTAC

OCI-Ly-1

0.1

DC₅₀

0.05 nM 0.03 nM

ARV-393 Log₁₀ [nM]

10

D_{max} 93%

94%

97%

0.01

2 hours

4 hours

kD

100

75

37

Species	CL (%Q _H)	Bioav. (F%)
Mouse	18%	>100%
rat	47%	29%
dog	16%	18%
cyno	26%	21%

ARV-393 has broad antiproliferative activity *in-vitro* against numerous NHL cell lines

APRIL 5-10 • AACR.ORG/AACR24 • #AACR24

- Potent BCL6 degradation gives potent *in vitro* antiproliferation activity in GCB, ABC and BL cell lines
 - SU-DHL-4 is a triple hit, high grade BCL and R-CHOP resistant¹ cell line

ARV-393 induces ~90% BCL6 degradation in-vivo 4hours after oral dosing

Vehicle (BCL6/GAPDH norm)

%

140-

120-100

> 80 60 40

20

- Sustained knockdown of BCL6 achieved beyond 24hrs with single oral 10mpk dose Exposure well in excess of OCI-Ly-1 DC₅₀ corrected for assay media binding
 - (DC_{50,u})
- Washout experiment shows that sustained plasma/tumor exposure required to maintain low BCL6 levels as it is rapidly resynthesized

ARV-393 is well tolerated and displays single agent anti-tumor activity in NHL xenograft models

16

12 Time (h) 20

24

0.01

0.001

DC_{50,u}

Significant TGI observed in multiple cell line-derived xenograft models

12

ARV-393 3mpk p.o. QD

ARV-393 3mpk p.o. BID

ARV-393 10mpk p.o. QD

ARV-393 drives tumor regressions in patient-derived xenograft (PDX) models of multiple subtypes of NHL

Breadth of efficacy beyond DLBCL demonstrated in multiple patient-derived xenograft (PDX) models with no body weight loss^a

^a Body weights not shown

NHL, non-Hodgkin's lymphoma; NOS, not otherwise specified; DLBCL, diffuse large B-cell lymphoma; HGBCL, high grade B-cell lymphoma; GCB, germinal center B-cell; ABC, activated B-cell.

- A medicinal chemistry effort identified ARV-393, a highly potent, orally bioavailable PROTAC[®] BCL6 degrader
- ARV-393 induces rapid and sustained BCL6 degradation *in vitro* and *in vivo*, leading to single agent efficacy against multiple NHL tumor xenograft models including those derived from patients
- ARV-393 was designated "safe to proceed" to the clinic by FDA in late
 2023 with FIH trials to begin in 1H 2024

Acknowledgements

BCL6 Biology Team Sheryl Gough (Co-lead) Lynn DeCarr Sarah Eaton

<u>Chemistry</u> Dan Sherman (Co-lead)

In Vivo Pharmacology

Jennifer Pizzano Mark Bookbinder Elizabeth Bortolon

Discovery Synthesis Science

Hanqing Dong Gan Wang Lin Yuan

<u>Chemistry CRO</u> <u>Collaborators</u> Hailong Ji (Pharmaron) Anshu Wu (WuXi)

Platform Biology John Corradi Rashaun Wilson

Formulation Science

Ram Lingamaneni Roy Haskell

Tech Ops & Platform

Xin Chen Guy Laidig Dan Rogoz

Translational Science

Sean Landrette

Thank you!

<u>CADD</u> Wei Zhang

Dev Team

Bryan Jackson Sarah Tannenbaum-Dvir Juan Chavez Jiachang Gong Jesse Brock

Leadership

Larry Snyder Achal Pashine Ian Taylor Keith Hornberger Michael Berlin

Project Mgmt

Brenda Ryan Robin DeWalt Lisa Ritz Agnes Kairer

Non Clinical Sci.

Eric Masson Yongqing Huang Wei Nu George Zhang Timothy Ackerson